A critical fractional equation with concave-convex power nonlinearities

2013 
In this work we study the following fractional critical problem $$ (P_{\lambda})=\left\{\begin{array}{ll} (-\Delta)^s u=\lambda u^{q} + u^{2^*_{s}-1}, \quad u{>}0 & \mbox{in} \Omega\\ u=0 & \mbox{in} \RR^n\setminus \Omega\,, \end{array}\right. $$ where $\Omega\subset \mathbb{R}^n$ is a regular bounded domain, $\lambda>0$, $0 2s$. Here $(-\Delta)^s$ denotes the fractional Laplace operator defined, up to a normalization factor, by $$ -(-\Delta)^s u(x)={\rm P. V.} \int_{\RR^n}\frac{u(x+y)+u(x-y)-2u(x)}{|y|^{n+2s}}\,dy, \quad x\in \RR^n. $$ Our main results show the existence and multiplicity of solutions to problem $(P_\lambda)$ for different values of $\lambda$. The dependency on this parameter changes according to whether we consider the concave power case ($0
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    2
    Citations
    NaN
    KQI
    []