Opening the Soul Window Manually: Limbal Tissue Scaffolds with Electrospun Polycaprolactone/Gelatin Nanocomposites.

2021 
Restricted by the difficulty in fabricating scaffolds suitable for cell proliferation, the use of ex vivo expanded limbal stem cell (LSC) for LSC transplantation, an effective treatment method for patients with limb stem cell deficiency (LSCD), is hard to be widely used in clinical practice. To tackle these challenges, a novel electrospun polycaprolactone (PCL)/gelatin nanocomposite is proposed to make 3D scaffolds for limbal niche cells (LNC) proliferation in vitro, which is a milestone in the treatment of diseases such as LSCD. PCL and gelatin in different weight ratios are dissolved in a mixed solvent, and then electrospinning and cross-linking are performed to prepare a scaffold for cell proliferation. The characterizations of the nanocomposites indicate that the gelatin content has a significant effect on its micro-morphology, thermal properties, crystallinity, degradation temperature, hydrophilicity, and mechanical properties. P8G2-C (PCL: gelatin = 80: 20, cross-linked), with smooth fibers and homogeneous pores, has better hydrophilicity, mechanical properties, and flexibility, so it can support LNC as cell proliferation assays revealed. This detailed investigation presented here demonstrates the feasibility of using PCL/gelatin nanocomposites electrospun fiber membranes as a limbus tissue engineering scaffold, which undoubtedly provide a new perspective for the development of tissue engineering field.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    0
    Citations
    NaN
    KQI
    []