P-type InxGa1−xN semibulk templates (0.02 < x < 0.16) with room temperature hole concentration of mid-1019 cm−3 and device quality surface morphology

2021 
Using the semibulk approach, p-InxGa1−xN semibulk (p-SB) templates were grown with an indium content ranging from 2.4% to 15.2% via metalorganic chemical vapor deposition. When compared to optimized bulk p-GaN, the hole concentration in p-SB with an In content of ∼15.2% increased by two orders of magnitude from 5.22 × 1017 to 5.28 × 1019 cm−3. The resistivity and mobility of the templates decreased gradually from 3.13 Ω · cm and 3.82 cm2/V s for p-GaN to 0.24 Ω · cm and 0.48 cm2/V s for p-SB with an In content of 15.2%. Temperature dependent Hall measurements were conducted to estimate the activation energy of the p-SB template. The p-SB with the In content of ∼15.2% is estimated to have an activation energy of 29 meV. These heavily doped p-SB templates have comparable material qualities to that of GaN. The atomic force microscopy height retraces of p-SB films show device quality surface morphology, with root mean square roughness ranging from 2.53 to 4.84 nm. The current results can impact the performances of several nitride-based devices, such as laser diodes, LEDs, solar cells, and photodetectors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    1
    Citations
    NaN
    KQI
    []