P2–Na2/3Ni1/3Mn5/9Al1/9O2 Microparticles as Superior Cathode Material for Sodium-Ion Batteries: Enhanced Properties and Mechanisam via Graphene Connection

2016 
As a promising alternative for lithium ion batteries, room-temperature sodium ion batteries (SIBs) have become one significant research frontier of energy storage devices although there are still many difficulties to be overcome. For the moment, the studies still concentrate on the preparation of new electrode materials for SIBs to meet the applicability. Herein, one new P2–Na2/3Ni1/3Mn5/9Al1/9O2 (NMA) cathode material is successfully prepared via a simple and facile liquid-state method. The prepared NMA is layered transition metal oxide, which can keep stable crystal structure during sodiation/desodiation as demonstrated by the ex situ X-ray diffraction, and its electrochemical properties can be further enhanced by connecting the cake-like NMA microparticles with reduced graphene oxide (RGO) using a ball milling method. Electrochemical tests show that the formed RGO-connected NMA (NMA/RGO) can deliver a higher reversible capacity of up to 138 mAh g–1 at 0.1 C and also exhibit a superior high-rate capabil...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    117
    Citations
    NaN
    KQI
    []