SARS-CoV-2 exacerbates proinflammatory responses in myeloid cells through C-type lectin receptors and Tweety family member 2

2021 
Summary Despite mounting evidence for SARS-CoV-2 engagement with immune cells, most express little, if any, of the canonical receptor of SARS-CoV-2, ACE2. Here, using a myeloid-cell receptor-focused ectopic expression screen, we identified several C-type lectins (DC-SIGN, L-SIGN, LSECtin, ASGR1, and CLEC10A) and Tweety family member 2 (TTYH2) as glycan-dependent binding partners of the SARS-CoV-2 spike. Except for TTYH2, these molecules primarily interacted with spike via regions outside of the receptor-binding domain. Single-cell RNA-sequencing analysis of pulmonary cells from COVID-19 patients indicated predominant expression of these molecules on myeloid cells. Although these receptors do not support active replication of SARS-CoV-2, their engagement with virus induced robust proinflammatory responses in myeloid cells that correlated with COVID-19 severity. We also generated a bispecific anti-spike nanobody that not only blocked ACE2-mediated infection but also the myeloid receptors-mediated proinflammatory responses. Our findings suggest SARS-CoV-2-myeloid receptor interactions promote immune hyper-activation, which represents potential targets for COVID-19 therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    95
    References
    30
    Citations
    NaN
    KQI
    []