Enhancement of Lycopene Production in Escherichia coli by Optimization of the Lycopene Synthetic Pathway
2005
Using carotenoid genes of Erwinia herbicola, metabolic engineering was carried out for lycopene production with the pAC-LYCO4 plasmid, which was composed of a chromosomal DNA fragment of E. herbicola containing the crtE, crtB, and crtI genes under the control of the tetracycline promoter and the ipi gene of Haematococcus pluvialis with the trc promoter. Plasmid pAC-LYCm4 was constructed for efficient expression of the four exogenous genes using a strong RBS sequence and the same tetracycline promoter. The optimized expression construct of pAC-LYCm4 increased lycopene production three times as compared with pACLYCO4. pAC-LYCm5 containing ispA behind the four exogenous genes was constructed. There was no significant difference in lycopene production and cell growth between pAC-LYCm4 and pAC-LYCm5. FPP synthase encoded by ispA was not rate-limiting for lycopene production. Each gene of crtE, crtB, crtI, and ipi was overexpressed, using pBAD-crtE, pBAD-crtIB, and pBAD-ipiHP1, in addition to their expression from pAC-LYCm4. However, there was no increase of lycopene production with the additional overexpression of each exogenous gene. The four exogenous genes appeared to be not rate-limiting in cells harboring pAC-LYCm4. When pDdxs, pBAD24 containing dxs, was introduced into cells harboring lycopene synthetic plasmids, lycopene production of pAC-LYCO4, pAC-LYCm4, and pAC-LYCm5 was increased by 4.7-, 2.2-, and 2.2-fold, respectively. Lycopene production of pBADDXm4 containing crtE, crtB, crtI, ipi, and dxs was 5.2 mg/g dry cell weight with 0.2% arabinose, which was 8.7-fold higher than that of the initial strain with pAC-LYCO4. Therefore, the present study showed that proper regulation of a metabolically engineered pathway is important for lycopene production.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
16
Citations
NaN
KQI