Reinterpreting Shock Wave Structure Predictions using the Navier-Stokes Equations

2020 
Classical Navier–Stokes equations fail to predict shock wave profiles accurately. In this paper, the Navier–Stokes system is fully transformed using a velocity variable transformation. The transformed equations termed the recast Navier–Stokes equations display physics not initially included in the classical form of the equations. We then analyze the stationary shock structure problem in a monatomic gas by solving both the classical and the recast Navier–Stokes equations numerically using a finite difference global solution (FDGS) scheme. The numerical results are presented for different upstream Mach numbers ranging from supersonic to hypersonic flows. We found that the recast Navier–Stokes equations show better agreement with the experimentally measured density and reciprocal shock thickness profiles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    2
    Citations
    NaN
    KQI
    []