Behavior and Energy States of Photogenerated Charge Carriers on Pt- or CoOx-Loaded LaTiO2N Photocatalysts: Time-Resolved Visible to Mid-Infrared Absorption Study

2014 
Femtosecond to second time-resolved visible to mid-infrared absorption spectroscopy was applied to investigate the behavior of photogenerated electrons and holes on a Pt- or CoOx-loaded LaTiO2N photocatalyst. CoOx-loaded catalyst exhibits the highest activity for water oxidation under visible light (<600 nm) excitation, and the quantum efficiency reaches up to ∼30%. Transient absorption spectra suggest that most of the photoexcited electrons in LaTiO2N lose activity by deep trapping in the mid-gap states created at 0.74 eV (6000 cm–1) below the conduction band. In this case, Pt loading was not so effective for H2 evolution because the loaded Pt could not effectively capture the trapped electrons from LaTiO2N. The electron transfer was slow, proceeding in 0–100 μs, and was thus ineffective. However, in the case of CoOx loading, we have clearly observed, for the first time, that the holes are captured rapidly by CoOx in a few picoseconds, and the lifetimes of electrons are dramatically prolonged to the seco...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    94
    Citations
    NaN
    KQI
    []