Robust Normalized Subband Adaptive Filter Algorithm with a Sigmoid-Function-Based Step-Size Scaler and Its Convex Combination Version
2021
In this paper, by inserting the logarithm cost function of the normalized subband adaptive filter algorithm with the step-size scaler (SSS-NSAF) into the sigmoid function structure, the proposed sigmoid-function-based SSS-NSAF algorithm yields improved robustness against impulsive interferences and lower steady-state error. In order to identify sparse impulse response further, a series of sparsity-aware algorithms, including the sigmoid L0 norm constraint SSS-NSAF (SL0-SSS-NSAF), sigmoid step-size scaler improved proportionate NSAF (S-SSS-IPNSAF), and sigmoid L0 norm constraint step-size scaler improved proportionate NSAF (SL0-SSS-IPNSAF), is derived by inserting the logarithm cost function into the sigmoid function structure as well as the L0 norm of the weight coefficient vector to act as a new cost function. Since the use of the fix step size in the proposed SL0-SSS-IPNSAF algorithm, it needs to make a trade-off between fast convergence rate and low steady-state error. Thus, the convex combination version of the SL0-SSS-IPNSAF (CSL0-SSS-IPNSAF) algorithm is proposed. Simulations in acoustic echo cancellation (AEC) scenario have justified the improved performance of these proposed algorithms in impulsive interference environments and even in the impulsive interference-free condition.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
27
References
0
Citations
NaN
KQI