Completely Bio-based Polyol Production from Sunflower Stalk Saccharification Lignin Residue via Solvothermal Liquefaction Using Biobutanediol Solvent and Application to Biopolyurethane Synthesis

2018 
Sunflower stalk saccharification lignin residue was converted to a completely bio-based biopolyol via solvothermal liquefaction using acid catalyst. Different isomer-type biobutanediols were used to replace petroleum-derived reaction solvents. The reaction parameters were optimized according to measurement of the biomass conversion and the hydroxyl and acid numbers. The lignin-derived biopolyol with a biomass conversion of 80.1%, hydroxyl number of 819.0 mg KOH/g, and acid number of 26.5 mg KOH/g was produced in the optimal condition (reaction temperature of 120 °C, 4 wt% acid catalyst loading, reaction time of 120 min, and 25 wt% biomass loading). The lignin-derived biopolyol was neutralized to decrease the acid number. The neutralized biopolyol was used to synthesize biopolyurethane via polymerization with poly(propylene glycol), tolylene 2,4-diisocyanate terminated. Urethane bond formation was confirmed by FT-IR analysis. The biopolyurethane showed good thermal properties, such as a Td5 of 273.4 °C, Td10 of 305.8 °C, and a single degradation peak at 387.2 °C.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    5
    Citations
    NaN
    KQI
    []