Resistive switching performance improvement of InGaZnO-based memory device by nitrogen plasma treatment

2020 
Abstract With the demand of flat panel display development, utilizing the non-volatile memory devices based on indium-gallium-zinc-oxide (IGZO) film may be integrated with IGZO thin film transistors (TFTs) to accomplish system-on-panel applications. In this work, 1 × 1 μm2 via hole structure IGZO based memory device was fabricated and the resistive switching (RS) behavior was investigated. By inserting a nitrogen doping layer IGZO:N by plasma treatment in Pt/IGZO/TiN device, highly improved RS performance including lower forming voltage, remarkable uniformity, large memory window of 102, retention property of 104 s at 125 °C, excellent pulse endurance of 107 cycles were achieved. The X-ray photoelectron spectroscopy analysis indicates that plasma doping method can evenly dope nitrogen and induce more non-lattice oxygen in the IGZO film. It is deduced that the N atoms of the inserting layer can influence the random formation of oxygen vacancy type conducting filaments, which results in more stable and uniform performance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    6
    Citations
    NaN
    KQI
    []