Phosphate enhanced uranium stable immobilization on biochar supported nano zero valent iron.

2022 
Abstract Uranium (U) immobilization from wastewater by zero valent iron (ZVI) was widely concerned through reduction and surface adsorption. Releasing of U due to re-oxidation of U(IV) into U(VI) limited the application of ZVI in U decontamination. In this work, a kind of biochar supported nano zero valent iron (Fe/BC(900)) was obtained by carbothermal reduction of starch mixed with ferric nitrate at 900 oC. U immobilization behavior by Fe/BC(900) in the presence of phosphate (P) was investigated. The U immobilization reaction was adjusted by controlling the sequence of U, Fe/BC(900) and P. U immobilization efficiency was enhanced to 99.9% in the presence of P. Reaction sequence of U, Fe/BC(900) and P influenced the U immobilization efficiency, which followed the order of (U-P)+Fe/BC(900)> (U- Fe/BC(900))+P> U+Fe/BC(900)> (P-Fe/BC(900))+U. P and nZVI both contributed to enhancing U immobilization through precipitation of uranyl-P and reductive co-precipitate (U(IV) in a wide pH range. The released Fe ions could precipitate with uranyl and phosphate. Consumption of P and nZVI in the (P-Fe/BC(900))+U system limited U immobilization ability. The precipitate is highly dependent on U, P and Fe elements. U desorption in (U-P)+Fe/BC(900) system was not observed with stability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    1
    Citations
    NaN
    KQI
    []