Role of Aberrantly Activated Lysophosphatidic Acid Receptor 1 Signaling Mediated Inflammation in Renal Aging

2021 
The increasing load of senescent cells is a source of aging, and chronic inflammation plays a pivotal role in cellular senescence. In addition, senescent renal tubular epithelial cells are closely associated with renal aging. Lysophosphatidic acid (LPA) is a bioactive lipid mainly produced by the catalytic action of autotaxin (ATX), and its ligation to LPA receptor-1 (LPAR1) is associated with chronic inflammation and renal fibrosis; however, its role in renal aging is unclear. Male 2-, 12-, and 24-month-old C57BL/6 mice and Human renal proximal tubular epithelial cells (HRPTEpiC) were used in the present study. DNA damage and oxidative stress-induced senescence were simulated using doxorubicin (DOXO) and H2O2, respectively. The aged kidney showed decreased renal function, increased fractional mesangial area, and tubulointerstitial fibrosis. Both aged kidney and senescent cells showed increased levels of LPAR1, Nuclear factor κB (NF-κB), and inflammatory cytokines. In addition, LPAR1-knockdown reduced NF-κB and subsequent inflammatory cytokine induction, and NF-κB-knockdown resulted in decreased LPAR1 expression. Our study revealed a positive feedback loop between LPAR1 and NF-κB, which reinforces the role of inflammatory response, suggesting that blocking of aberrantly activated LPAR1 may reduce excessive inflammation, thereby providing a new possible therapeutic strategy to attenuate renal aging.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    0
    Citations
    NaN
    KQI
    []