NucleoMap: a computational tool for identifying nucleosomes in ultra-high resolution contact maps

2021 
Although poorly positioned nucleosomes are ubiquitous in the prokaryote genome, they are difficult to identify with existing nucleosome identification methods. Recently available enhanced high-throughput chromatin conformation capture techniques such as Micro-C, DNase Hi-C, and Hi-CO characterize nucleosome-level chromatin proximity, probing the positions of mono-nucleosomes and the spacing between nucleosome pairs at the same time, enabling profiling of nucleosomes in poorly positioned regions. Here we develop a novel computational approach, NucleoMap, to identify nucleosome positioning from ultra-high resolution chromatin contact maps. By integrating nucleosome binding preferences, read density, and pairing information, NucleoMap precisely locates nucleosomes in both eukaryotic and prokaryotic genomes and outperforms existing nucleosome identification methods in sensitivity and specificity. We rigorously characterize genome-wide association in eukaryotes between the spatial organization of mono-nucleosomes and their corresponding histone modifications, protein binding activities, and higher-order chromatin functions. We also predict two tetra-nucleosome folding structures in human embryonic stem cells using machine learning methods and analysis their distribution at different structural and functional regions. Based on the identified nucleosomes, nucleosome contact maps are constructed, reflecting the inter-nucleosome distances and preserving the original data9s contact distance profile.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    0
    Citations
    NaN
    KQI
    []