Lipase-Catalysed In Situ Transesterification of Waste Rapeseed Oil to Produce Diesel-Biodiesel Blends

2020 
Rapeseed oil of high acidity, an agricultural industry by-product unsuitable for food, was used as an inexpensive raw material for the production of biodiesel fuel. The use of rapeseed oil that is unsuitable for food and lipase as a catalyst makes the biodiesel production process environmentally friendly. Simultaneous oil extraction and in situ transesterification using diesel as an extraction solvent was investigated to obtain a diesel-biodiesel blend. The diesel and rapeseed oil blend ratio was 9:1 (w/w). The enzymatic production of biodiesel from rapeseed oil with high acidity and methanol using eleven different lipases as biocatalysts was studied. The most effective biocatalyst, lipase—Lipozyme TL IM (Thermomyces lanuginosus), which is suitable for in situ transesterification—was selected, and the conversion of rapeseed oil into fatty acid methyl ester was evaluated. The influence of the amount of methanol and lipase, the reaction temperature and the reaction time were investigated to achieve the highest degree of transesterification. The optimal reaction conditions, when the methanol to oil molar ratio was 5:1, were found to be a reaction time of 5 h, a reaction temperature of 25 °C and a lipase (Lipozyme TL IM) concentration of 5% (based on oil weight). Under these optimal conditions, 99.90% (w/w) of the rapeseed oil was extracted from the seed and transesterified. The degree of transesterification obtained was 98.76% (w/w). Additionally, the glyceride content in the biodiesel fuel was investigated and met the requirements perfectly.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    4
    Citations
    NaN
    KQI
    []