Physical Exercise Attenuates Experimental Autoimmune Encephalomyelitis by Inhibiting Peripheral Immune Response and Blood-Brain Barrier Disruption.

2017 
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) caused by demyelination, immune cell infiltration, and axonal damage. Herein, we sought to investigate the influence of physical exercise on mice experimental autoimmune encephalomyelitis (EAE), a reported MS model. Data show that both strength and endurance training protocols consistently prevented clinical signs of EAE and decreased oxidative stress, an effect which was likely due to improving genomic antioxidant defense—nuclear factor erythroid 2-related factor (Nrf2)/antioxidant response elements (ARE) pathway—in the CNS. In addition, physical exercise inhibited the production of pro-inflammatory cytokines interferon (IFN)-γ, interleukin (IL)-17, and IL-1β in the spinal cord of mice with EAE. Of note, spleen cells obtained from strength training group incubated with MOG35–55 showed a significant upregulation of CD25 and IL-10 levels, with a decrease of IL-6, MCP-1, and tumor necrosis factor (TNF)-α production, mainly, during acute and chronic phase of EAE. Moreover, these immunomodulatory effects of exercise were associated with reduced expression of adhesion molecules, especially of platelet and endothelial cell adhesion molecule 1 (PECAM-1). Finally, physical exercise also restored the expression of tight junctions in spinal cord. Together, these results demonstrate that mild/moderate physical exercise, when performed regularly in mice, consistently attenuates the progression and pathological hallmarks of EAE, thereby representing an important non-pharmacological intervention for the improvement of immune-mediated diseases such as MS.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    73
    Citations
    NaN
    KQI
    []