Experimental Evaluation of the Effect of the Anode Diffusion Layer Properties on the Performance of a Passive Direct Methanol Fuel Cell

2020 
Passive direct methanol fuel cells (pDMFCs) are promising devices to replace the conventional batteries in portable electronic devices, due to their higher energy densities, autonomies, and instant recharging. However, some challenges, such as their costs, efficiency, and durability, need to be overcome before their commercialization. Towards that, this work presents the effect of the anode diffusion layer (ADL) properties on the performance of a pDMFC using a membrane electrode assembly (MEA) with reduced loadings on both anode and cathode catalysts (3 mg/cm2 Pt/Ru on the anode and 1.3 mg/cm2 of Pt on the cathode). The pDMFC behavior was evaluated through polarization and electrochemical impedance spectroscopy measurements, which allow identifying and quantifying the different losses that affect these systems. The results showed better performances when a diffusion layer with a dual-layer structure was used using higher methanol concentrations. The maximum power density achieved was 3.00 mW/cm2, using carbon cloth with a microporous layer, CC_MPL, as ADL, and a methanol concentration of 5 M. In this work, a tailored and low-cost MEA, using the materials available in the market, was proposed to achieve higher performances working under higher methanol concentrations. This work demonstrates that performing modifications on the fuel cell structure/design is an efficient way to achieve optimized performances.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    2
    Citations
    NaN
    KQI
    []