Scavenging wind energy by a dynamic-stable flutter energy harvester with rectangular wing

2019 
This letter proposes an energy harvester with dynamic multistability to harvest the wind energy. In this design, a piezoelectric beam is integrated with a rectangular wing to initiate the flutter; the multistable mechanism is realized by oppositely placing a tip magnet and two fixed magnets. It is found that the proposed energy harvester has the dynamic stability that can execute and sustain the snap-through motion over a wide range of wind speeds. A prototype of the harvester was fabricated, and the validation experiment was carried out. The harvester exhibited the bistable characteristic at low wind speed and the tristable characteristic at high wind speed. The experimental results showed that the presented system could realize snap-through (even coherence resonance) and produce high output power for the wind speed ranging from 1.5 m/s to 7.5 m/s.This letter proposes an energy harvester with dynamic multistability to harvest the wind energy. In this design, a piezoelectric beam is integrated with a rectangular wing to initiate the flutter; the multistable mechanism is realized by oppositely placing a tip magnet and two fixed magnets. It is found that the proposed energy harvester has the dynamic stability that can execute and sustain the snap-through motion over a wide range of wind speeds. A prototype of the harvester was fabricated, and the validation experiment was carried out. The harvester exhibited the bistable characteristic at low wind speed and the tristable characteristic at high wind speed. The experimental results showed that the presented system could realize snap-through (even coherence resonance) and produce high output power for the wind speed ranging from 1.5 m/s to 7.5 m/s.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    23
    Citations
    NaN
    KQI
    []