Investigation of GaN-on-Si and GaN-on-SOI Substrate Capacitances for Discrete and Monolithic Half-Bridges

2021 
While the lateral GaN power integration technology allows integration of half-bridges, the conductive Si-substrate causes static and dynamic biasing effects. This work investigates capacitance-related effects in monolithic half-bridges on GaN-on-Si and GaN-on-SOI substrates and various feasible substrate terminations. The effect of the substrate capacitances and termination on the effective C ISS , C OSS , C RSS device capacitances and switch-node capacitance C SW , switching energy E SW and gate-charge Q G in half-bridges is analyzed. A gate-to-gate cross-coupling capacitance C XSS in monolithic GaN-on-Si half-bridges on floating substrates is revealed. Furthermore, a small unintentional integrated dc-link capacitance C DC also follows from the analysis for monolithic GaN-on-Si half-bridges on floating substrate. Measurements of GaN-on-Si half-bridges with different substrate terminations verify the analysis. The analysis of the GaN-on-Si half-bridge with floating substrate shows an effectively reduced output capacitance and the best trade-off in terms of C RSS increase, which is verified by measurements where it shows the highest hard-switching dc-dc efficiency of the analyzed configurations. The analysis shows how buried oxides in GaN-on-SOI half-bridges increases switch-node capacitance and thus switching losses or times. At 200 V, the efficiency of the GaN-on-Si half-bridge on floating substrate, as feasible for a monolithic half-bridge, exceeds the measured efficiency of a conventional half-bridge due to the reduced effective capacitance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    0
    Citations
    NaN
    KQI
    []