Soft Three-Dimensional Microscale Vibratory Platforms for Characterization of Nano-Thin Polymer Films

2019 
Vibrational resonances of microelectromechanical systems (MEMS) can serve as means for assessing physical properties of ultrathin coatings in sensors and analytical platforms. Most such technologies exist in largely two-dimensional configurations with a limited total number of accessible vibration modes and modal displacements, thereby placing constraints on design options and operational capabilities. This study presents a set of concepts in three-dimensional (3D) microscale platforms with vibrational resonances excited by Lorentz-force actuation for purposes of measuring properties of thin-film coatings. Nanoscale films including photodefinable epoxy, cresol novolak resin, and polymer brush with thicknesses as small as 270 nm serve as the test vehicles for demonstrating the advantages of these 3D MEMS for detection of multiple physical properties, such as modulus and density, within a single polymer sample. The stability and reusability of the structure are demonstrated through multiple measurements of ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    16
    Citations
    NaN
    KQI
    []