Water and waste load allocation in rivers with emphasis on agricultural return flows: application of fractional factorial analysis.

2014 
In this paper, a new methodology is developed to handle parameter and input uncertainties in water and waste load allocation (WWLA) in rivers by using factorial interval optimization and the Soil, Water, Atmosphere, and Plant (SWAP) simulation model. A fractional factorial analysis is utilized to provide detailed effects of uncertain parameters and their interaction on the optimization model outputs. The number of required optimizations in a fractional factorial analysis can be much less than a complete sensitivity analysis. The most important uncertain inputs and parameters can be also selected using a fractional factorial analysis. The uncertainty of the selected inputs and parameters should be incorporated real time water and waste load allocation. The proposed methodology utilizes the SWAP simulation model to estimate the quantity and quality of each agricultural return flow based on the allocated water quantity and quality. In order to control the pollution loads of agricultural dischargers, it is assumed that a part of their return flows can be diverted to evaporation ponds. Results of applying the methodology to the Dez River system in the southwestern part of Iran show its effectiveness and applicability for simultaneous water and waste load allocation in rivers. It is shown that in our case study, the number of required optimizations in the fractional factorial analysis can be reduced from 64 to 16. Analysis of the interactive effects of uncertainties indicates that in a low flow condition, the upstream water quality would have a significant effect on the total benefit of the system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    24
    Citations
    NaN
    KQI
    []