Usefulness of a new online patient-specific quality assurance system for respiratory-gated radiotherapy

2017 
Abstract Purpose The accuracy of gated irradiation may decrease when treatment is performed with short “beam-on” times. Also, the dose is subject to variation between treatment sessions if the respiratory rate is irregular. We therefore evaluated the impact of the differences between gated and non-gated treatment on doses using a new online quality assurance (QA) system for respiratory-gated radiotherapy. Methods We generated dose estimation models to associate dose and pulse information using a 0.6 cc Farmer chamber and our QA system. During gated irradiation with each of seven regular and irregular respiratory patterns, with the Farmer chamber readings as references, we evaluated our QA system’s accuracy. We then used the QA system to assess the impact of respiratory patterns on dose distribution for three lung and three liver radiotherapy plans. Gated and non-gated plans were generated and compared. Results There was agreement within 1.7% between the ionization chamber and our system for several regular and irregular motion patterns. For dose distributions with measured errors, there were larger differences between gated and non-gated treatment for high-dose regions within the planned treatment volume (PTV). Compared with a non-gated plan, PTV D 95% for a gated plan decreased by −1.5% to −2.6%. Doses to organs at risk were similar with both plans. Conclusions Our simple system estimated the radiation dose to the patient using only pulse information from the linac, even during irregular respiration. The quality of gated irradiation for each patient can be verified fraction by fraction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    2
    Citations
    NaN
    KQI
    []