language-icon Old Web
English
Sign In

X-ray microscopy

2003 
Recent years have seen significant advances in both low and high energy X-ray microscopy. The image in X-ray microscopy is usually formed by differences in absorption of X-ray photons. Soft X-ray microscopy (energies below a few thousand eV) uses wavelengths under 10 nm. Since light wavelengths are approximately 500 nm, resolution is much better with X-rays. One can obtain nanoscale resolution with focused soft X-ray imaging of thin biological objects. To achieve high spatial resolution in high energy X-ray microscopy one can use focused parallel monochromatic beams produced by synchrotron radiation or one can use a microfocal X-ray source with high geometrical magnification of the image. For weakly absorbing objects the image contrast can be enhanced by X-ray refraction on inhomogeneities and phase contrast formation. The physical principles of the phase contrast technique are similar to those in optics and are based on X-ray interference. Modeling and experimental aspects of the phase contrast technique with a microfocal X-ray source and the effects of geometrical and material parameters are reviewed in some detail. Examples of phase contrast of porosity in a polymer layer and an aluminum weld are shown. The computer-simulated images are compared with images from experiment with a 5 μm microfocal X-ray source. Phase retrieval methods and phase map reconstruction from measured X-ray images are also discussed. Applications of the phase-contrast X-ray imaging include medical radiology, material science, and industrial radiography and tomography.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []