Outline of the concept of stable relativistic radiation sphere. A model of quasar

2017 
The new possibilities to construct the stable relativistic compact objects were opened by Ni in 2011, after his discovery of new solution of the Einstein field equations for the spherically symmetric distribution of matter. The solution occurs to be the super-class of the well-known Tolman-Oppenheimer-Volkoff solution published in 1939. In the presented work, we consider the equation of state for a radiation fluid and use the Ni’s solution to construct the massive objects consisting of radiation. We describe their fundamental properties. Since there is no upper constraint of energy/mass of the Ni’s object, the formally calculated gravitational mass (from gravitational effects) of these objects can be as high as observed for the super-massive compact objects in the centers of galaxies and even in the most massive quasars. In the solution by Ni, the gravitational acceleration is not linearly proportional to the energy concentrated in the object. Actually, the models indicate that the objects should be extremely luminous, as quasars. The most massive of them can have enough energy to emit the radiation with a quasar luminosity during the age of the universe. And, it is predicted that they must possess an extremely extended “corona” with the gravitational effects resembling those, which are assigned to a dark matter.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    2
    Citations
    NaN
    KQI
    []