Cadaver-Specific Models for Finite-Element Analysis of Iliopsoas Impingement in Dual-Mobility Hip Implants

2018 
Abstract Background Joint dislocation is a major cause of failure in total hip arthroplasty. Dual-mobility implants provide a femoral head diameter that can match the native hip size for greater stability against dislocation. However, such large heads are prone to impingement against surrounding soft tissues. To address this concern, the concept of an anatomically contoured dual-mobility implant was evaluated using cadaver-specific finite-element analysis (FEA). Methods The stiffness of 10 iliopsoas tendons was measured and also 3D bone models, contact pressure, and iliopsoas tendon stress were evaluated for 2 implant designs according to a previous cadaveric experiment. The iliopsoas interaction with an anatomically contoured and conventional dual-mobility implant was analyzed throughout hip flexion. Results The tensile test of cadaveric iliopsoas tendons revealed an average linear stiffness of 339.4 N/mm, which was used as an input for the FEA. Tendon-liner contact pressure and tendon von Mises stress decreased with increasing hip flexion for both implants. Average contact pressure and von Mises stresses were lower in the anatomically contoured design compared with the conventional implant across all specimens and hip flexion angles. Conclusions This study was built upon a previous cadaver study showing reduced tenting of the iliopsoas tendon for an anatomically contoured design compared with a conventional dual-mobility implant. The present cadaver-specific FEA study found reduced tendon-liner contact pressure and tendon stresses with contoured dual-mobility liners. Anatomical contoured design may be a solution to avoid anterior soft-tissue impingement when using hip prostheses with large femoral heads.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    5
    Citations
    NaN
    KQI
    []