Efficient Aircraft Multidisciplinary Design Optimization and Sensitivity Analysis via Signomial Programming

2018 
This paper proposes a new methodology for physics-based aircraft multidisciplinary design optimization (MDO) and sensitivity analysis. The proposed architecture uses signomial programming (SP), a type of difference-of-convex optimization that is solved iteratively as a series of log-convex problems. A requirement of SP is that all constraints and objective functions must have explicit signomial formulas. The SP MDO architecture facilitates the low-cost computation of optimal sensitivities through Lagrange duality. The specific example of commercial aircraft MDO is considered. Using SP, a small-, medium-, and large-scale benchmark problem is solved 16, 39, and 26 times faster, respectively, than Transport Aircraft System Optimization (TASOPT), a comparable and widely used aircraft MDO tool. The SP solution times include computation of all optimal parameter and constraint sensitivities, a feature unique to the presented architecture. The reliability of SP is demonstrated by converging a commercial aircraft ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    9
    Citations
    NaN
    KQI
    []