Towards a structurally resolved human protein interaction network
2021
All cellular functions are governed by complex molecular machines that assemble through protein-protein interactions. Their atomic details are critical to the study of their molecular mechanisms but fewer than 5% of hundreds of thousands of human interactions have been structurally characterized. Here, we test the potential and limitations of recent progress in deep-learning methods using AlphaFold2 to predict structures for 65,484 human interactions. We show that higher confidence models are enriched in interactions supported by affinity or structure based methods and can be orthogonally confirmed by spatial constraints defined by cross-link data. We identify 3,137 high confidence models, of which 1,371 have no homology to a known structure, from which we identify interface residues harbouring disease mutations, suggesting potential mechanisms for pathogenic variants. We find groups of interface phosphorylation sites that show patterns of co-regulation across conditions, suggestive of coordinated tuning of multiple interactions as signalling responses. Finally, we provide examples of how the predicted binary complexes can be used to build larger assemblies. Accurate prediction of protein complexes promises to greatly expand our understanding of the atomic details of human cell biology in health and disease.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
43
References
0
Citations
NaN
KQI