Moisture buffering, energy potential, and volatile organic compound emissions of wood exposed to indoor environments

2017 
The use of wood in built environments has been increasing during the last decades, and more focus has been set on the influence of wood surfaces on indoor environments on the objective and subjective measures of human well-being. In addition, the moisture buffer capacity of hygroscopic materials, such as wood, has been under investigation in order to quantify the impact of wooden surfaces on energy savings in buildings. The current study presents the results of wood surfaces and indoor air temperatures as well as indoor air relative humidity measured in two solid timber test houses. The findings reveal a substantial effect on wood surface temperature under fluctuating indoor relative humidity due to the latent heat of sorption of water vapors. The results were compared with hygrothermal numerical simulations, showing good agreement and the validated numerical model was used in order to quantify the energy performance in a bathroom when the latent heat of sorption is exploited. The combination of wood with...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    12
    Citations
    NaN
    KQI
    []