Baby's First Macrophage: Temporal Regulation of Hofbauer Cell Phenotype Influences Ligand-Mediated Innate Immune Responses across Gestation.

2020 
The importance of fetal placental macrophages (Hofbauer cell [HCs]) is underscored by their appearance 18 d postconception and maintenance through term; however, how human HCs evolve during healthy pregnancy and how microenvironment and ontogeny impact phenotype and function remain unknown. In this study, we comprehensively classify human HCs ex vivo, interrogate phenotypic plasticity, and characterize antiviral immune responses through gestation. Activated HCs were abundant in early pregnancy and decreased by term; molecular signatures emphasize inflammatory phenotypes early in gestation. Frequency of HCs with regulatory phenotypes remained high through term. Furthermore, term HCs exhibited blunted responses to stimulation, indicating reduced plasticity. IFN-lambda1 is a key placental IFN that appeared less protective than IFN-alpha, suggesting a potential weakness in antiviral immunity. Ligand-specific responses were temporally regulated: we noted an absence of inflammatory mediators and reduced antiviral gene transcription following RIG-I activation at term despite all HCs producing inflammatory mediators following IFN-gamma plus LPS stimulation. Collectively, we demonstrate sequential, evolving immunity as part of the natural history of HCs through gestation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    13
    Citations
    NaN
    KQI
    []