Excellent energy storage performance of NaNbO3-based antiferroelectric ceramics with ultrafast charge/discharge rate

2021 
Abstract Dielectric capacitors have drawn increasing attention due to their fast charge/discharge rates and high power density. Among all known ceramic dielectric materials, antiferroelectrics are more attractive for their unique double ferroelectric hysteresis loops and higher energy densities. Here, a series of antiferroelectric ceramics x(0.95Bi0.5Na0.5TiO3-0.05SrZrO3)-(1-x)NaNbO3 (xBNTSZ-(1-x)NN, x = 0.23, 0.30, 0.35, 0.50) have been prepared. By stabilizing the antiferroelectric phase and postponing the critical electric field of the antiferroelectric-ferroelectric phase transition, an impressive discharge energy storage density of 4.08 J/cm3 at a breakdown strength of 370 kV/cm was achieved for the 0.35BNTSZ-0.65 N N. A superior comprehensive performance for the 0.50BNTSZ-0.50 N N ceramic with a discharge energy storage density (Wdis) of 3.78 J/cm3 and an efficiency of 86 % at an electric field strength of 320 kV/cm along with excellent frequency, temperature, and fatigue stabilities (fluctuations of Wdis≤±5% within 0.01∼100 Hz, Wdis≤10 % over 20∼140 °C, and Wdis≤1% over 106 cycle numbers) is realized. Furthermore, 0.50BNTSZ-0.50 N N ceramics simultaneously exhibit a high current density (622.5 A/cm2), high power density (112 MW/cm3), and fast discharge rate (t = 47 ns), all of which make it an excellent candidate for the pulsed power devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    1
    Citations
    NaN
    KQI
    []