Quantitative morphometric study of the subaxial cervical vertebrae end plate.

2017 
Abstract Background Context Cervical disc arthroplasty has been gradually adopted as an alternative for the treatment of cervical degenerative disease. However, there is a large discrepancy between footprints of currently available cervical disc prostheses and anatomic dimensions of cervical end plates. Purpose This study aimed to accurately and comprehensively quantify the three-dimensional (3D) anatomic morphology of the cervical vertebral end plate and provide a theoretical basis for designing appropriate disc prostheses. Moreover, we introduced a novel geometric and mechanical model for 3D reconstruction techniques of the cervical end plate. Study Design A descriptive study of the geometry of the middle and lower cervical vertebral end plates in cadaveric spines was carried out. Methods A total of 138 cervical vertebral end plates were digitized using an optical 3D range scanning system, and then each end plate was reconstructed using the digitized image. For each end plate, the morphologic characteristics of six surface curves and the end plate concavity depth were symmetrically chosen and depicted. Results The cranial end plates (relative to the disc) were concave and the caudal end plates were relatively flat at all disc levels, with mean concavity depths of 2.04 and 0.69 mm, respectively. For the caudal end plates, the end plate concavity apex was most often (81.42%) located in the posterior portion, whereas in the cranial end plates, the distribution was relatively even. For the sagittal curves, the foremost point and the rearmost point on the middle curve had a more forward position than those in the left curve and the right curve. Regarding the frontal plane curves, the length of the middle curve was longer than that of the anterior curve and posterior curve. For the cranial end plate, the maximal mean depth was the middle curve, whereas for the caudal end plate, the maximum depth was the posterior curve. Conclusions There is marked morphologic asymmetry, in that the cranial end plate is more concave than the corresponding caudal end plate. In the sagittal plane, the caudal end plates are aerofoil-shaped, whereas the cranial end plates are arc-shaped. In the transverse plane, the end plates are kidney-shaped. These morphologic characteristics of cervical vertebral end plates should be taken into consideration when designing cervical devices, such as artificial discs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    6
    Citations
    NaN
    KQI
    []