Broadband laser-based mid-IR spectroscopy for analysis of proteins and monitoring of enzyme activity

2021 
Abstract Laser-based infrared (IR) spectroscopy is an emerging key technology for the analysis of solutes and for real-time reaction monitoring in liquids. Larger applicable pathlengths compared to the traditional gold standard Fourier transform IR (FTIR) spectroscopy enable robust measurements of analytes in a strongly absorbing matrix such as water. Recent advancements in laser development also provide large accessible spectral coverage thus overcoming an inherent drawback of laser-based IR spectroscopy. In this work, we benchmark a commercial room temperature operated broadband external cavity-quantum cascade laser (EC-QCL)-IR spectrometer with a spectral coverage of 400 cm−1 against FTIR spectroscopy and showcase its application for measuring the secondary structure of proteins in water, and for monitoring the lipase-catalyzed saponification of triacetin. Regarding the obtained limit of detection (LOD), the laser-based spectrometer compared well to a research-grade FTIR spectrometer employing a liquid nitrogen cooled detector. With respect to a routine FTIR spectrometer equipped with a room temperature operated pyroelectric detector, a 15-fold increase in LOD was obtained in the spectral range of 1600–1700 cm−1. Characteristic spectral features in the amide I and amide II region of three representative proteins with different secondary structures could be measured at concentrations as low as 0.25 mg mL−1. Enzymatic hydrolysis of triacetin by lipase was monitored, demonstrating the advantage of a broad spectral coverage for following complex chemical reactions. The obtained results in combination with the portability and small footprint of the employed spectrometer opens a wide range of future applications in protein analysis and industrial process control, which cannot be readily met by FTIR spectroscopy without recurring to liquid nitrogen cooled detectors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    1
    Citations
    NaN
    KQI
    []