Entanglement Wedge Reconstruction via Universal Recovery Channels

2019 
In the context of quantum theories of spacetime, one overarching question is how quantum information in the bulk spacetime is encoded holographically in boundary degrees of freedom. It is particularly interesting to understand the correspondence between bulk subregions and boundary subregions in order to address the emergence of locality in the bulk quantum spacetime. For the AdS/CFT correspondence, it is known that this bulk information is encoded redundantly on the boundary in the form of an error-correcting code. Having access only to a subregion of the boundary is as if part of the holographic code has been damaged by noise and rendered inaccessible. In quantum-information science, the problem of recovering information from a damaged code is addressed by the theory of universal recovery channels. We apply and extend this theory to address the problem of relating bulk and boundary subregions in AdS/CFT, focusing on a conjecture known as entanglement wedge reconstruction. Existing work relies on the exact equivalence between bulk and boundary relative entropies, but these are only approximately equal in bulk effective field theory, and in similar situations it is known that predictions from exact entropic equalities can be qualitatively incorrect. We show that the framework of universal recovery channels provides a robust demonstration of the entanglement wedge reconstruction conjecture as well as new physical insights. Most notably, we find that a bulk operator acting in a given boundary region's entanglement wedge can be expressed as the response of the boundary region's modular Hamiltonian to a perturbation of the bulk state in the direction of the bulk operator. This formula can be interpreted as a noncommutative version of Bayes's rule that attempts to undo the noise induced by restricting to only a portion of the boundary. To reach these conclusions, we extend the theory of universal recovery channels to finite-dimensional operator algebras and demonstrate that recovery channels approximately preserve the multiplicative structure of the operator algebra.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    45
    Citations
    NaN
    KQI
    []