Nanoporous Polymers Incorporating Sterically Confined N-Heterocyclic Carbenes for Simultaneous CO2 Capture and Conversion at Ambient Pressure

2015 
Postcombustion CO2 capture and the conversion of captured CO2 into value added chemicals are integral part of today’s energy industry mainly due to their economic and environmental benefits arising from the direct utilization of CO2 as a sustainable source. Sterically confined N-heterocyclic carbenes (NHCs) have played a significant role in organocatalysis due to their air-stability, super basic nature, and strong ability to activate and convert CO2 gas. Here, we report a new class of nanoporous polymer incorporating sterically confined N-heterocyclic carbenes (NP-NHCs) that exhibit exceptional CO2 capture fixation efficiency of 97% at room temperature, which is the highest ever reported for carbene based materials measured in the solid state. The NP-NHC can also function as a highly active, selective, and recyclable heterogeneous nanoporous organocatalyst for the conversion of CO2 into cyclic carbonates at atmospheric pressure with excellent yields up to 98% along with 100% product selectivity through an...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    92
    Citations
    NaN
    KQI
    []