An EGFR autocrine loop encodes a slow-reacting but dominant mode of mechanotransduction in a polarized epithelium

2010 
The mechanical landscape in biological systems can be complex and dynamic, with contrasting sustained and fluctuating loads regularly superposed within the same tissue. How resident cells discriminate between these scenarios to respond accordingly remains largely unknown. Here, we show that a step increase in compressive stress of physiological magnitude shrinks the lateral intercellular space between bronchial epithelial cells, but does so with strikingly slow exponential kinetics (time constant ∼110 s). We confirm that epidermal growth factor (EGF)-family ligands are constitutively shed into the intercellular space and demonstrate that a step increase in compressive stress enhances EGF receptor (EGFR) phosphorylation with magnitude and onset kinetics closely matching those predicted by constant-rate ligand shedding in a slowly shrinking intercellular geometry. Despite the modest degree and slow nature of EGFR activation evoked by compressive stress, we find that the majority of transcriptomic responses ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    83
    References
    18
    Citations
    NaN
    KQI
    []