Indirubin-3′-monoxime induces paraptosis in MDA-MB-231 breast cancer cells by transmitting Ca2+ from endoplasmic reticulum to mitochondria

2020 
Abstract Purpose Indirubin-3′-monoxime (I3M) induces cell death in many cancer cells; however, whether I3M regulates paraptosis is unclear. The present study aimed to investigate I3M-induced paraptosis. Methods We treated various cancer cells with I3M, and measured vacuole formation (a paraptosis marker) and the regulating signaling pathway such as endoplasmic reticulum (ER) stress, reactive oxygen species, and proteasomal dysfunction. Results We found that I3M induced small vacuole formation in MDA-MB-231 breast cancer cells and transient knockdown of eIF2α and CHOP significantly downregulated vacuolation in the ER and mitochondria, as well as cell death in response to I3M, indicating that I3M-meditaed paraptosis was upregulated by ER stress. Moreover, I3M accumulated ubiquitinylated proteins via proteasome dysfunction, which stimulated ER stress-mediated Ca2+ release. A Ca2+ chelator significantly downregulated vacuolation in the ER and mitochondria as well as cell death, suggesting that Ca2+ was a key regulator in I3M-induced paraptosis. Our results also revealed that Ca2+ finally transited in mitochondria through mitochondrial Ca2+ uniporter (MCU), causing I3M-mediated paraptosis; however, the paraptosis was completely inhibited by, ruthenium red, an MCU inhibitor. Conclusion I3M induced proteasomal dysfunction-mediated ER stress and subsequently promoted Ca2+ release, which was accumulated in the mitochondria via MCU, thus causing paraptosis in MDA-MB-231 breast cancer cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    3
    Citations
    NaN
    KQI
    []