Thermal reactions of lithiated graphite anode in LiPF6-based electrolyte

2008 
Abstract The thermal reactions of a lithiated graphite anode with and without 1.3 M lithium hexafluorophosphate (LiPF 6 ) in a solvent mixture of ethylene carbonate (EC) and ethylmethyl carbonate (EMC) were investigated by means of differential scanning calorimetry (DSC). The products of the thermal decomposition occurring on the lithiated graphite anode were characterized by Fourier transform infrared (FT-IR) analysis. The lithiated graphite anode showed two broad exothermic peaks at 270 and 325 °C, respectively, in the absence of electrolyte. It was demonstrated that the first peak could be assigned to the thermal reactions of PF 5 with various linear alkyl carbonates in the solid electrolyte interphase (SEI) and that the second peak was closely related to the thermal decomposition of the polyvinylidene fluoride (PVdF) binder. In the presence of electrolyte, the lithiated graphite anode showed the onset of an additional exothermic peak at 90 °C associated with the thermal decomposition reactions of the SEI layer with the organic solvents.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    46
    Citations
    NaN
    KQI
    []