Left ventricular myocardial deformation pattern, mechanical dispersion, and their relation with electrocardiogram markers in the large population-based STANISLAS cohort: insights into electromechanical coupling.

2020 
AIMS  Mechanical alterations in patients with electrical conduction abnormalities are reported to have prognostic value in patients with left ventricular asynchrony or long QT syndrome beyond electrocardiogram (ECG) variables. Whether conduction and repolarization patterns derived from ECG are associated with speckle tracking echocardiography parameters in subjects without overt cardiac disease is yet to be investigated. To report ranges of longitudinal deformation according to conduction and repolarization values in a population-based cohort. METHODS AND RESULTS  One thousand, one hundred, and forty subjects (48.6 ± 14.0 years, 47.7% men) enrolled in the fourth visit of the STANISLAS cohort (Lorraine, France) were studied. Echocardiography strain was performed in all subjects. RR, PR, QRS, and QT intervals were retrieved from digitalized 12-lead ECG. Echocardiographic data were stratified according to quartiles of QRS and QTc duration values. Full-wall global longitudinal strain (GLS) was -21.1 ± 2.5% with a mechanical dispersion (MD) value of 34 ± 12 ms. Absolute GLS value was lower in the longest QRS quartile and shortest QTc quartile (both P   421 ms; P = 0.002). CONCLUSION  Longer QTc is related to increased MD and better longitudinal strain values. In a population-based setting, QRS is not associated with MD, suggesting that echocardiography-based dyssynchrony does not largely overlap with ECG-based dyssynchrony.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    6
    Citations
    NaN
    KQI
    []