Functional MRI based simulations of ECoG grid configurations for optimal measurement of spatially distributed hand-gesture information

2020 
In electrocorticography (ECoG), the physical characteristics of the electrode grid determine which aspect of the neurophysiology is measured. For particular cases, the ECoG grid may be tailored to capture specific features, such as in the development and use of brain-computer-interfaces (BCI). Neural representations of hand movement are increasingly used to control ECoG based BCIs. However, it remains unclear which grid configurations are the most optimal to capture the dynamics of hand gesture information. Here, we investigate how the design and surgical placement of grids would affect the usability of ECoG measurements. High resolution 7T functional MRI was used as a proxy for neural activity in ten healthy participants to simulate various grid configurations, and evaluated the performance of each configuration for decoding hand gestures. The grid configurations varied in number of electrodes, electrode distance and electrode size. Optimal decoding of hand gestures occurred in grid configurations with a higher number of densely-packed, large-size, electrodes up to a grid of ~5x5 electrodes. When restricting the grid placement to a highly informative region of primary sensorimotor cortex, optimal parameters converged to about 3x3 electrodes, an inter-electrode distance of 8mm, and an electrode size of 3mm radius (performing at ~70% 3-class classification accuracy). Our approach might be used to identify the most informative region, find the optimal grid configuration and assist in positioning of the grid to achieve high BCI performance for the decoding of hand-gestures prior to surgical implantation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    0
    Citations
    NaN
    KQI
    []