SLIMP: Supervised learning of metabolite-protein interactions from co-fractionation mass spectrometry data

2021 
Abstract Metabolite-protein interactions affect and shape diverse cellular processes. Yet, despite advances, approaches for identifying metabolite-protein interactions at a genome-wide scale are lacking. Here we present an approach termed SLIMP that predicts metabolite-protein interactions using supervised machine learning on features engineered from metabolic and proteomic profiles from a co-fractionation mass spectrometry-based technique. By applying SLIMP with gold standards, assembled from public databases, along with metabolic and proteomic data sets from multiple conditions and growth stages we predicted over 9,000 and 20,000 metabolite-protein interactions for Saccharomyces cerevisiae and Arabidopsis thaliana, respectively. Extensive comparative analyses corroborated the quality of the predictions from SLIMP with respect to widely-used performance measures (e.g. F1-score exceeding 0.8). SLIMP predicted novel targets of 2’, 3’ cyclic nucleotides and dipeptides, which we analysed comparatively between the two organisms. Finally, predicted interactions for the dipeptide Tyr-Asp in Arabidopsis and the dipeptide Ser-Leu in yeast were independently validated, opening the possibility for future applications of supervised machine learning approaches in this area of systems biology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    2
    Citations
    NaN
    KQI
    []