Spontaneous profile self-organization in a simple realization of drift-wave turbulence

2016 
We report the observation of a transport bifurcation that occurs by spontaneous self-organization of a drift-wave and shear flow system in a linear plasma device. As we increase the magnetic field above a threshold ( BCr = 1200 G), a global transition occurs, with steepening of mean density and ion pressure profiles, onset of strong E×B shearing, a reduction of turbulence, and improved turbulent radial particle transport. An abrupt transition appears in the graph of turbulent particle flux versus density gradient. Hysteresis in the density gradient further confirms this transport bifurcation. The total Reynolds work on the flow sharply increases above threshold. This correlates with the increase of density steepness, which suggests the Reynolds stress-driven flow that plays an essential role in density steepening and transport bifurcation. A change in turbulence feature from drift waves (DWs) to a mix of DWs and ion temperature gradients also coincides with the transport bifurcation. Interesting phenomena...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    20
    Citations
    NaN
    KQI
    []