How Does Agonist and Antagonist Binding Lead to Different Conformational Ensemble Equilibria of the κ-Opioid Receptor: Insight from Long-Time Gaussian Accelerated Molecular Dynamics Simulation

2019 
The opioid receptors belong to the class A seven transmembrane-spanning (7TM) G protein-coupled receptors (GPCRs). The κ-opioid receptor (KOR) is a subfamily of four opioid receptors. The endogenous peptide and a variety of selective agonists and antagonists of KOR have been developed. The structurally similar ligands at the same site cause completely opposite biological functions and induce different conformational changes. To shed light on the conformation ensembles and conformational dynamics in activation and deactivation processes of KOR, we performed all-atom, long-time Gaussian accelerated molecular dynamics simulation (GaMD) on KOR binding with agonist epoxymorphinan MP1104 and antagonist JDTic, respectively. Our results revealed different conformation ensembles of KOR binding with agonist and with antagonist. Agonist binding stabilizes the active state of key motifs including DYYNM motif and CWxP motif, and biases the conformation equilibria toward the active state. Antagonist binding will not de...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    7
    Citations
    NaN
    KQI
    []