Biological and analytical techniques used for detection of polyaromatic hydrocarbons

2017 
Polycyclic aromatic hydrocarbons contain two or more fused benzene rings that are considered as cosmo-pollutants ubiquitously found in the environment. The identification and monitoring of polycyclic aromatic hydrocarbons (PAHs) are of great interests for rapid and on-site detection. Therefore, many analytical and biological techniques have been proposed for the qualitative and quantitative assessments of PAHs. Non-biological analytical techniques such as infrared, Raman, and fluorescence spectroscopies are commonly exploited as non-destructive techniques while gas chromatography (GC) and high-performance liquid chromatography (HPLC) with multiple detectors are extensively employed for the separation and detection of an analyte. Even though spectroscopy and chromatography are more accurate, convenient, and feasible techniques, often, these methods are expensive and sophisticated which require high maintenance cost. On the other hand, biological approaches, i.e., immunoassay, PCR, and microarray, offer comprehensive high-throughput specificity and sensitivity for a similar analyte. Biosensor- and immunoassay-mediated detections of PAHs have opened up new avenues in terms of low cost, rapid determination, and higher sensitivity. In this review, we have discussed the strengths and limitations of biological and analytical techniques that were explored for precise evaluation and were trusted at both the legislation and research levels.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    112
    References
    12
    Citations
    NaN
    KQI
    []