Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome

2007 
The root-knot nematode (Meloidogyne spp.) is a major plant pathogen, affecting several solanaceous crops worldwide. In Capsicum annuum, resistance to this pathogen is controlled by several independent dominant genes—the Me genes. Six Me genes have previously been shown to be stable at high temperature in three highly resistant and genetically distant accessions: PI 322719, PI 201234, and CM334 (Criollo de Morelos 334). Some genes (Me4, Mech1, and Mech2) are specific to certain Meloidogyne species or populations, whereas others (Me1, Me3, and Me7) are effective against a wide range of Meloidogyne species, including M. arenaria, M. javanica, and M. incognita, the most common species in Mediterranean and tropical areas. These genes direct different response patterns in root cells depending on the pepper line and nematode species. Allelism tests and fine mapping using the BSA-AFLP approach showed these genes to be different but linked, with a recombination frequency of 0.02–0.18. Three of the PCR-based markers identified in several genetic backgrounds were common to the six Me genes. Comparative mapping with CarthaGene software indicated that these six genes clustered in a single genomic region within a 28 cM interval. Four markers were used to anchor this cluster on the P9 chromosome on an intraspecific reference map for peppers. Other disease resistance factors have earlier been mapped in the vicinity of this cluster. This genomic area is colinear to chromosome T12 of tomato and chromosome XII of potato. Four other nematode resistance genes have earlier been identified in this area, suggesting that these nematode resistance genes are located in orthologous genomic regions in Solanaceae.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    104
    Citations
    NaN
    KQI
    []