Structural and Electrochemical Characteristics of Ca-Doped “Flower-like” Li4Ti5O12 Motifs as High-Rate Anode Materials for Lithium-Ion Batteries

2018 
Doped motifs offer an intriguing structural pathway toward improving conductivity for battery applications. Specifically, Ca-doped, three-dimensional “flower-like” Li4–xCaxTi5O12 (“x” = 0, 0.1, 0.15, and 0.2) micrometer-scale spheres have been successfully prepared for the first time using a simple and reproducible hydrothermal reaction followed by a short calcination process. The products were experimentally characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) mapping, inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge–discharge testing. Calcium dopant ions were shown to be uniformly distributed within the LTO structure without altering the underlying “flower-like” morphology. The largest lattice expansion and the highest Ti3+ ratios were noted ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    51
    Citations
    NaN
    KQI
    []