State-shifting at the edge of resilience: River suspended sediment responses to land use change and extreme storms

2017 
Abstract The interaction of climate, geomorphology, and land use dictates catchment sediment production and associated river sediment loads. Accordingly, the resilience of catchments to disturbances can be assessed with suspended sediment regimes. This case study in the hill country of the lower North Island of New Zealand was a decade-long examination of the short- and long-term effects of an extreme storm event on sediment supply and exhaustion in the Oroua and Pohangina catchments, two catchments that have experienced intense land use changes and frequent broad-scale landslides. Indicators of Hydrologic Alteration, a program developed to characterize hydrologic regimes, was used to analyze daily suspended sediment records over a period of a decade in order to characterize sediment regimes of the Oroua and Pohangina. An aggregated data set of sediment-bearing events for the period of record was analyzed to examine the suspended sediment response of individual storms relative to runoff magnitudes. The findings of this study demonstrate that large storms that generate extreme landsliding and flooding have the ability to produce enough sediment to temporarily convert catchments from a supply-limited state to a transport-limited state. Landsliding and thus sediment supply was disproportionately high in locations where livestock grazing occurred on steep hillslopes. The timing and intensity of previous storms, or the antecedent catchment condition, was also shown to influence the response of the catchments. In both catchments, suspended sediment loads were elevated for a period of ~ 4 years following the landslide-generating February 2004 storm. The methods and findings we present are useful for assessing the resilience of catchments exposed to frequent disturbances such as land use changes and landslides.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    7
    Citations
    NaN
    KQI
    []