Trapping and Electron Paramagnetic Resonance Characterizationof the 5′dAdo • Radical in a Radical S ‑Adenosyl Methionine Enzyme Reaction with a Non-NativeSubstrate

2019 
S-Adenosyl methionine (SAM) is employed as a [4Fe-4S]-bound cofactor in the superfamily of radical SAM (rSAM) enzymes, in which one-electron reduction of the [4Fe-4S]-SAM moiety leads to homolytic cleavage of the S-adenosyl methionine to generate the 5′-deoxyadenosyl radical (5′dAdo•), a potent H-atom abstractor. HydG, a member of this rSAM family, uses the 5′dAdo• radical to lyse its substrate, tyrosine, producing CO and CN that bind to a unique Fe site of a second HydG Fe–S cluster, ultimately producing a mononuclear organometallic Fe-l-cysteine-(CO)2CN complex as an intermediate in the bioassembly of the catalytic H-cluster of [Fe–Fe] hydrogenase. Here we report the use of non-native tyrosine substrate analogues to further probe the initial radical chemistry of HydG. One such non-native substrate is 4-hydroxy phenyl propanoic acid (HPPA) which lacks the amino group of tyrosine, replacing the CαH-NH2 with a CH2 at the C2 position. Electron paramagnetic resonance (EPR) studies show the generation of a st...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    27
    Citations
    NaN
    KQI
    []