Anti-thermal grain growth in SrTiO 3 : Coupled reduction of the grain boundary energy and grain growth rate constant

2018 
Abstract The dihedral angles at grain boundary thermal grooves in SrTiO 3 were measured and used to determine the relative grain boundary energy at several temperatures where the grain growth rate constant displays anti-thermal properties (it decreases with increasing temperature). The measurements indicate that at temperatures in the anti-thermal region (1390 °C–1400 °C), the average grain boundary energy is less than at a lower temperature (1350 °C) where grain boundaries move more rapidly. Three-dimensional electron backscatter diffraction was used to measure the geometries of internal triple junctions in a sample where the slow and fast grain boundaries co-exist. Based on the dihedral angles at triple junctions, the ratio of the energies of slow boundaries to fast boundaries is 0.86. The results indicate that at temperatures between 1350 °C and 1425 °C, the higher and lower energy boundaries coexist. The coexistence of the two boundary types in this temperature range is likely because there is a range of grain boundary energies and the temperature at which a boundary transforms from the slow type to the fast type depends on its grain boundary energy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    19
    Citations
    NaN
    KQI
    []