General neutrino mass spectrum and mixing properties in seesaw mechanisms

2020 
Neutrinos stand out among elementary particles through their unusually small masses. Various seesaw mechanisms attempt to explain this fact. In this work applying insights from matrix theory we are in a position to treat variants of seesaw mechanisms in a general manner. Specifically, using Weyl's inequalities we discuss and rigorously prove under which conditions the seesaw framework leads to a mass spectrum with exactly three light neutrinos. We find an estimate on the mass of heavy neutrinos to be the mass obtained by neglecting light neutrinos shifted at most by the maximal strength of the coupling to the light neutrino sector. We provide analytical conditions allowing to prescribe that precisely two out of five neutrinos are heavy. For higher-dimensional cases the inverse eigenvalue methods are used. In particular, for the CP invariant scenarios we show that if the neutrino sector has a valid mass matrix after neglecting the light ones, i.e. the respective mass submatrix is positive definite, then large masses are provided by matrices with large elements accumulated on the diagonal. Finally, the Davis-Kahan theorem is used to show how masses affect the rotation of light neutrino eigenvectors from the standard Euclidean basis. This general observation concerning neutrino mixing together with results on the mass spectrum properties opens directions for further neutrino physics studies using matrix analysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    105
    References
    2
    Citations
    NaN
    KQI
    []