Studies on the effect of sodium arsenate on the enzymes of carbohydrate metabolism, brush border membrane, and oxidative stress in the rat kidney.

2014 
Abstract Arsenic is an environmental pollutant and its contamination in drinking water poses serious world wide environmental health threats. It produces multiple adverse effects in various tissues, including the kidney. However, biochemical mechanism and renal response to its toxic insult are not completely elucidated. We hypothesized that sodium arsenate (ARS) induces oxidative stress and alters the structure and metabolic functions of kidney. Male Wistar rats were administered ARS (10 mg/kg body weight/day), intraperitoneally daily for 10 days. ARS administration increased blood urea nitrogen, serum creatinine, cholesterol, glucose, and phospholipids but decreased inorganic phosphate, indicating kidney toxicity. The activity of brush border membrane (BBM) enzymes significantly lowered in both cortex and medulla. Activity of hexokinase, lactate dehydrogenase, glucose-6-phosphate dehydrogenases, and NADP-malic enzyme significantly increased whereas malate dehydrogenase, glucose-6-phosphatase, and fructose 1,6 bis phosphatase decreased by ARS exposure. The activity of superoxide dismutase, GSH-peroxidase, and catalase were selectively altered in renal tissues along with an increase in lipid peroxidation. The present results indicated that ARS induced oxidative stress caused severe renal damage that resulted in altered levels of carbohydrate metabolism and BBM enzymes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    17
    Citations
    NaN
    KQI
    []